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Not only beautiful to observe...1

Be healthy with nature!
1
http://medex.basecent.com/admin/resources/images/1/1/1911.pdf
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... but also very important in engineering

Flows with free surfaces occur in many industrial applications:
important to understand the underlying physics

paint spraying
agriculture spray deposition
cosmetic sprays
internal combustion engines
spray cooling
cooling towers
icing on airplanes

Numerical simulations provide a detailed insight into the
phenomena and dynamic behavior of such flows

Intended for investigations of flows with free surfaces

The amount of information obtained is beyond the scope of
experimental and theoretical methods

requires sharp interface capturing: expensive to compute
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Limitations in experiments2

Three-dimensional phenomenon, highly transient

2
[Rioboo et al., 2001]
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Limitations in experiments3

Complex physics, a variety of phenomena produced by
single-drop impacts and their interactions

emerging of uprising sheets, breakup of sheets, crater
formation in the wall film, emerging of jets and capillary waves

3
[Cossali et al., 1997]
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Droplet Dynamics Under Extreme Ambient Conditions

Aircraft icing4

Based on depiction in Air Command Weather Manuel, Fig. 9.3

Water drops

At temperatures 

warmer than -15 °C, 

supercooled water

drops predominate

At temperatures 

colder than -20 °C, 

ice crystals

predominate

Region of 

ice crystals

In strong convective currents -in this case a

cumulonimbus-large supercooled water drops

can exist at very high levels
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4
[Criscione, 2014]
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Aircraft icing

Impact of supercooled droplets onto cold surfaces

A lack of understanding the fundamentals

Model of the impact and solidification process which describes
the impact of supercooled single drops on cold walls in detail

In addition to predicting the hydrodynamics, a special
challenge is to predict the observed morphology of icing
(thermodynamics)

numerical simulations provide a detailed distributions of field
variables in space and time: a valuable database that cannot
be collected in experiments
determination and understanding the physics (parameters) that
govern the flows at different stages
development of simple and reliable theoretical models able to
predict the outcome of the phenomena
eventually enable the control of processes involving such flows
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Interface tracking vs. interface capturing

Interface tracking (surface or front tracking)

a computational mesh moving with the free surface
free surface treated as a boundary (boundary conditions)

Interface capturing (volume tracking)
by introducing a level-set function5

by tracking fluid volumes using an indicator function6

5
[Osher and Sethian, 1988]

6
[Hirt and Nichols, 1981]
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Interface capturing models

Level-Set (LS) Method
a level-set function embedded in the flow (signed distance)

Volume Of Fluid (VOF)
indicator function for tracking phases by occupied subdomains

LS VOF
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VOF model hydrodynamics: a mixture approach

0.3 0.01 0.0 

0.01 

0.3 

0.6 1.0 

1.0 1.0 

α =

∫

V→∂x3 αldV
∫

V→∂x3(αl + αg )dV







= 0, gas

= 1, liquid

> 0, < 1, interface

ρ = ρlα+ ρg (1− α), µ = µlα+ µg (1− α)

∇ ·U = 0

∂α

∂t
+∇ · (Uα) = 0

∂(ρU)

∂t
+∇ · (ρUU) = −∇p +∇ ·T+ fb

T = µ
[

∇U+ (∇U)T
]

, fb = ρg+ fσ
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Mixture as incompressible fluid

∂ρ

∂t
+∇ · (ρU) = 0

∂[ρlα+ ρg (1− α)]

∂t
+∇ · {[ρlα+ ρg (1− α)]U} = 0

∂ρl
∂t

α+ ρl
∂α

∂t
+
∂ρg
∂t

(1− α) + ρg
∂(1− α)

∂t
+

∇ρlαU+ρl∇αU+∇ρg (1−α)U+ρg∇(1−α)U+[ρlα+ρg (1−α)]∇·U

= α

[
∂ρl
∂t

+U∇ρl

]

︸ ︷︷ ︸

Dρl/Dt = 0

+(1−α)

[
∂ρg
∂t

+U∇ρg

]

︸ ︷︷ ︸

Dρg/Dt = 0

+(ρl−ρg )

[
∂α

∂t
+U · ∇α

]

︸ ︷︷ ︸

Dα/Dt = 0

+[ρlα+ ρg (1− α)]∇ · U = 0

∇ ·U = 0

12 / 36



Introduction Computational approaches Governing equations Finite volume discretization Implementation and running

Surface tension effects at the interface

Kinematic and dynamic conditions at the interface

v1 − (n · v1)n = v2 − (n · v2)n

n · (T1 − T2) = σκn−∇sσ

∇s = ∇−∇n

(p2 − p1)n = σκn

Continuum Surface Force (CSF) model7

fσ ≈ σκ∇α = σ(−∇ · n)∇α

7
[Brackbill et al., 1992]
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Reformulation of the momentum equation

Modifications in the momentum equation

modified pressure, stress tensor, surface tension CSF model

pd = p − ρg · x

−∇p = −∇pd − ρg− g · x∇ρ

∇ · T = ∇ · µ
[

∇U+ (∇U)T
]

= ∇ · (µ∇U) + (∇U) · ∇µ

∂(ρU)

∂t
+ ∇ · (ρUU)−∇ · (µ∇U)− (∇U) · ∇µ

= −∇pd − g · x∇ρ+ σ

[

−∇ ·

(
∇α

|∇α|

)]

∇α
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Sharp interface capturing

Not geometrically reconstructive, requires some modelling to
numerically compress the interface

modifications in the phase fraction equation, compression term

∂α

∂t
+∇ · (Uα) +∇ · [Ucα(1 − α)] = 0

the compression velocity

shrinking the interphase, not related to compressible flow
acting only in the interface region, normal to the interface
does not bias the solution elsewhere
limited by the largest value of the velocity in the domain
model parameter Cα between 0 and 18

Uc = min[Cα|U|,max(|U|)]
∇α

|∇α|

8
[foam-extend, 2016]
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Energy equation

In terms of specific enthalpy h = u + p
ρ

∂(ρh)

∂t
+∇ · (ρUh) = ∇ · (k∇T ) +

Dp

Dt
+ (T : ∇U) + q̇V

In terms of temperature (dh = ( ∂h
∂T )pdT + (∂h∂p )Tdp)

∂(ρcpT )

∂t
+∇ · (ρcpUT )

= ∇ · (k∇T ) + ρT
Dcp

Dt
−

[
∂(ln ρ)

∂(lnT )

]

p

Dp

Dt
+ (T : ∇U) + q̇V

neglecting viscous dissipation and sources
∂(ρcpT )

∂t
+∇ · (ρcpUT ) = ∇ · (k∇T )

k = klα+ kg (1− α), ρcp = (ρcp)lα+ (ρcp)g (1− α)
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Complete model for the non-isothermal free-surface flow

∇ ·U = 0

∂α

∂t
+∇ · (Uα) +∇ · [Ucα(1 − α)] = 0

∂(ρU)

∂t
+ ∇ · (ρUU)−∇ · (µ∇U)− (∇U) · ∇µ

= −∇pd − g · x∇ρ+ σ

[

−∇ ·

(
∇α

|∇α|

)]

∇α

∂(ρcpT )

∂t
+∇ · (ρcpUT ) = ∇ · (k∇T )

ρ, µ, k , ρcp = f (liquid and gas properties, α)
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Discretization of space and time

Discretization of the solution domain

Discretization/integration of transport equations

∂(ρφ)

∂t
+∇ · (ρUφ) = ∇ · (Γ∇φ) + Sφ(φ)

∫ t+∆t

t

[
∂

∂t

∫

VP

ρφdV +

∫

VP

∇ · (ρUφ)dV

]

dt

=

∫ t+∆t

t

[∫

VP

∇ · (Γ∇φ)dV +

∫

VP

Sφ(φ)dV

]

dt
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Gradient, divergence, laplacian

Spatial derivatives: Gauss’s theorem

∫

VP

∇φdV =

∫

SP

dSφ ≈
∑

f

Sf φf

∫

VP

∇ · φdV =

∫

SP

dS · φ ≈
∑

f

Sf · φf

Laplacian term

∫

VP

∇ · (Γ∇φ)dV =

∫

SP

dS · (Γ∇φ) ≈
∑

f

Γf Sf · (∇φf )

(∇φ)⊥f ≈
φN − φP

|d|
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Convection term

Convection term linearization
∫

VP

∇·(ρUφ)dV =

∫

SP

dS·(ρUφ) ≈
∑

f

Sf ·(ρU)f φf =
∑

f

Fφf

NVD-TVD approach

φf =
φf − φU
φD − φU

φP =
φP − φU
φD − φU

0.0 0.2 0.4 0.6 0.8 1.0

φP

0.0

0.2

0.4

0.6

0.8

1.0

φ f
UD

GD

DD

CD

LL

Van Leer
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Cell-face interpolation

A combination of upwind (UD) and central differencing (CD)

φf ,UD = pos(Uf · Sf )φP + [1− pos(Uf · Sf )]φN

φf ,CD = fdφP + (1 − fd)φN , fd = fN/PN

pos(Uf · Sf ) =

{

1, for Uf · Sf > 0,flow from P to N

0, for Uf · Sf < 0,flow from N to P

φf = ψφf ,CD + (1− ψ)φf ,UD

φf = λ(φP − φN) + φN

λ = ψfd + (1− ψ) · pos(Uf · Sf )

except for conductivity: harmonic interpolation

kf =

(
1− fd

kP
+

fd

kN

)−1
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Source term handling

Source terms linearization
∫

VP

Sφ(φ)dV ≈ Sφ1
VP + Sφ2

φPVP

Source terms reconstruction

φP =

(
∑

f

Sf Sf

|Sf |

)−1

·

(
∑

f

Sf

|Sf |
· φf |Sf |

)

cell-centre value recovered as weighted average of the
(staggered) cell-face values

(∇pd )P =

(
∑

f

Sf Sf

|Sf |

)−1

·

(
∑

f

Sf

|Sf |
· (∇pd )

⊥

f |Sf |

)
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Time integration

Euler implicit

∂

∂t

∫

VP

(ρφ)dV ≈
(ρPφPVP)(t+∆t) − (ρPφPVP)t

∆t

∫ t+∆t

t

[
∂

∂t

∫

VP

ρφdV

]

dt ≈ (ρPφPVP)(t+∆t) − (ρPφPVP)t

∫ t+∆t

t

[∫

VP

LφdV

]

dt ≈ L∗(φP )(t+∆t)∆t

∫ t+∆t

t

[∫

VP

Sφ(φ)dV

]

dt ≈ (Sφ1
VP + Sφ2

φPVP)(t+∆t)∆t
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Evaluation of the compression term

The compression fluxes

(Uc,f · Sf ) = nf ·min

[

Cα
|Uf · Sf |

|Sf |
,max

(
|Uf · Sf |

|Sf |

)]

P N f 

P

P

f

f

N

N

fS

f

f

f fnS

nf =
(∇α)f

|(∇α)f + δn|
· Sf

δn =
ε

(∑

N

Vi

N

)1/3
, ε = 10−8
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Time step control and sub-cycling

Adaptive time step control

Co =
|Uf · Sf |

d · Sf
∆t

∆t = min

[
Comax

Coo
∆to , (1 + λ1

Comax

Coo
)∆to , λ2∆to ,∆tmax

]

Comax ≈ 0.2, λ1 = 0.1, λ2 = 1.2

Temporal sub-cycling

∆tsc =
∆t

nsc

F = ρUf · Sf =

nsc∑

i=1

∆tsc

∆t
Fsc,i

25 / 36



Introduction Computational approaches Governing equations Finite volume discretization Implementation and running

Boundary conditions

Basic boundary conditions

Dirichlet, specifies the values of the dependent variable on all
boundaries at all times

φb = f (xb, t)

Neumann, specifies the normal derivative of the dependent
variable on all boundaries at all times

(
∂φ

∂n

)

b

= n · ∇φ = f (xb, t)

Derived boundary conditions

various combinations
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Solution procedure

Iterative solution of linear systems

aPφP(t+∆t) +
∑

N

aNφN(t+∆t) = b

A · Φ = b

START TIME LOOP

Adjust new time step

Solve flow 

Solve phase fraction 

PISO loop: 

Solve momentum 

Solve pressure 

Correct fluxes (velocities)

Solve energy

Update properties

END TIME LOOP

Time 

loop
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Some of the previous results9

Droplet shape evolution in zero gravity

C  = 0 C  = 1 

C  = 0 

C  = 0.5 C  = 0.25 

C  = 1 

9
[Berberovic, 2010]
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Some of the previous results

Droplet impact onto a liquid layer

open boundary

wall

w
a
ll

a
x
is

 o
f 
s
y
m

m
e
tr

y
 

D0

U0

H0

29 / 36



Introduction Computational approaches Governing equations Finite volume discretization Implementation and running

Some of the previous results

Droplet impact onto a liquid layer
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Some of the previous results

Droplet impact onto a liquid layer
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Some of the previous results

Collisions of droplets
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Some of the previous results

Droplet impact onto a solid wall

0.0 0.5 1.0 1.5
r 

0.00

0.35

0.70

h 
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Some of the previous results

Droplet impact onto a solid wall: non-isothermal case

T

0.2 

0.4 

0.6 

0.8 

t = 1 ms 

t = 2 ms 

t = 3 ms 

t = 0.5 ms 
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foam-extend release11

The Extend Project of OpenFOAMr10

To be done in the workshop

preparing and running the cases using the existing solver
interFOAM

extending the transportModels library to enable thermal
treatment
extending the solver to include the temperature equation
modifying and preparing the cases for non-isothermal flow

10
[OpenFOAM, 2016]

11
[foam-extend, 2016]
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